mdsk.net
当前位置:首页 >> 一个数怎么能对一个向量求导 >>

一个数怎么能对一个向量求导

对它的每个坐标分别求导就行了。比如x=(sin(t),cos(t)),对x求导就是x'=(cos(t),-sin(t))。 求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可...

1. 矩阵Y对标量x求导: 相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 Y = [y(ij)] --> dY/dx = [dy(ji)/dx] 2. 标量y对列向量X求导: 注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量 y = f(x1,x2,..,...

方法: 1. 矩阵Y对标量x求导: Y = [y(ij)]d Y/dx = [dy(ji)/dx] 2. 标量y对列向量X求导: y = f(x1,x2,..,xn) dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)' 3. 行向量Y'对列向量X求导: Y的每一列对X求偏导,各列构成一个矩阵。 4. 列向量Y对行向量X’求...

没有!这样的“导数”无法定义,因为要建立这个定义,首先要建立差商的概念,以及差商极限的概念。 而在建立差商△f/△r的概念之前,首先要定义向量和向量的除法以及标量与向量的除法。 这就要建立一种新的向量的定义及数学体系。 梯度、散度、旋度...

对向量的求导就是求函数对 各个分量的导数.无论线性函数还是非线性函数,都可以表示为对各个分量的函数,如果你考虑分量的函数,这就是普通多元函数偏导数

关于范数。而通过向量来表示上述映射中所说的这个集合,得到另外一个几何(另外一个向量)。那么向量的范数,就是表示这个变化过程的大小的一个度量,就是表示这个原有集合的大小,一个集合(向量),这是因为函数是映射的一个特例,就是这个集...

设r=r(t)={x,y,z},其中,x,y,z是关于t的可微函数 常向量A={a,b,c},其中,a,b,c是常数 由题意,r'=r×A, 即: ={cy-bz,az-cx,bx-ay} 所以, x'=cy-bz, y'=az-cx, z'=bx-ay。 解这个方程组,即可求出x',y',z' 进而就可以求出r和x,y,z来。

本来不想说的。 你的前几个数据的y是相同的,也就是说是它们的数值导数肯定为零。但不意味着这些点都是极值点,这些绝对是你的数据精度的问题。 解析式比数值的优势,我觉得就是“精度”,解析式能求出任何一点的值,而数值只是有限的几个点是己知...

定义:零范数——向量中非0的元素的个数。关于范数:函数与几何图形往往是有对应的关系,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函数的高度形象化,比如一个函数对应几何空间上若干点组成的图形。但当函...

网站首页 | 网站地图
All rights reserved Powered by www.mdsk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com